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Exact solution of the E 0 E Jahn-Teller and Rabi 
Hamiltonian by generalised spheroidal wavefunctions? 

H G Reik, P Lais, M E Stutzle and  M Doucha 
Fakultat fur Physik der  LlniLersitat Freiburg, D-7800 Freiburg, Federal Republic of 
Germany 

Received 2 April 1987, in final form 8 July 1987 

Abstract. The Schrodinger equation for the E E  Jahn-Teller and  Rabi systems in 
Bargmann's Hilbert space is a system of two ordinary differential equations of first order  
for the spin u p  and  down components of the wavefunctions. This system has two regular 
and  one irregular singular points. The energy eigenvalues are  selected by the requirement 
that the solutions belong to the space of entire functions. The differential equations of the 
generalised spheroidal wavefunctions have the same singular points and  the same exponents 
a t  each singular point. It is therefore conjectured that the component  wavefunctions in 
the excited state i can be expanded in i + 4  generalised spheroidal wavefunctions. The 
energy eigenvalues U''' ( I  = 0, 1,.  . . , 5 )  calculated with the conjectured component  
wavefunctions agree with numerical values within the computational error.  The same is 
true for the coefficients of the Neumann expansion of the component  wavefunctions. A 
proof is still missing. 

1. Introduction 

Non-adiabatic model systems like the E @ &  Jahn-Teller system and the Rabi Hamil- 
tonian outside the rotating wave approximation (RWA) are interesting in their own 
right. The latter system is also practically important for the treatment of the one-atom 
maser (Meschede er a1 1985, Rempe et a1 1987). In  the experimental set-up, atoms 
prepared in a high Rydberg state (Gallas et a1 1985, Haroche and  Raimond 1985) 
cross a microwave cavity tuned to a particular transition. In the theoretical treatment 
(Jaynes and Cummings 1963, Yo0 and Eberly 1985, Filipowicz et a1 1986a,b, Knight 
1986) the authors use R W A  for simplicity although the interaction between atomic levels 
and  radiation scales with a high power of the principal quantum number. 

The first step towards the exact solution of these model systems was taken by Judd 
(1979) in an important paper. He solved the Longuet Higgins (Longuet Higgins er a1 
1958) recurrence relations for the E a &  and r , 0 T 2  Jahn-Teller systems in closed 
rational form for isolated values of the interaction constant (Juddian isolated exact 
solutions). The next step was taken by us. We formulated the E 0 e Jahn-Teller and 
the Rabi Hamiltonian in Bargmann's Hilbert space of analytical functions (Bargmann 
1961, 1962, Schweber 1967). We obtained a system of two linear first-order differential 
equations for the component wavefunctions, and expanded the wavefunctions in 
Neumann series. These series terminate for the isolated exact solutions (Reik er a1 
1982, 1985, Kus 1985, Kus and Lewenstein 1986). 

In  general the Neumann series are infinite but they converge much faster than the 
power series expansion which correspond to the occupation number representation. 
A thorough numerical study of the convergence properties has been made by Nusser 
(1983). 

0305-4470/87/186327 + 14S02.50 0 1987 IOP Publishing Ltd 6327 
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In  this paper we ask ourselves the question whether we can find new expansion 
functions which allow for a finite expansion of the wavefunction in the general case. 
For the Juddian isolated exact solutions this expansion must reduce to the finite 
Neumann series. 

Our answer to this question is only partial. By comparing the pole structure of the 
system of differential equations for the wavefunctions with the pole structure of the 
differential equation for the expansion functions of the Neumann series we pinpoint 
the analytical reason for the infinite Neumann expansions: one regular singular point 
in the system is an ordinary point in the differential equation for the expansion functions. 
We generalise the differential equation for the expansion functions so that the point 
in question becomes a regular singular point. The expansion functions defined in this 
way should therefore allow for finite expansions of the component wavefunctions 
unless we have missed a very subtle point. 

The paper is organised as follows. In  § 2 we formulate the Hamiltonians in 
Bargmann’s Hilbert space of analytical functions. The Neumann expansions are given 
in § 3 .  In § 4 we prove that the Neumann expansions are infinite except for the Juddian 
isolated exact solutions by looking at the unphysical solutions for the component 
wavefunctions. The new expansion functions and  their eigenvalues are studied in § 5 .  
These functions turn out to be the generalised spheroidal wavefunctions of Leitner 
and Meixner (1960). In § 6 an ansatz for the component wavefunctions is made in 
terms of a finite series of generalised spheroidal wavefunctions. In § 7 we use this 
ansatz to calculate the eigenvalues of the E 0 E Jahn-Teller system and the Rabi system 
up  to the fifth excited state. The results of this calculation are in agreement with the 
results of a numerical calculation within the limits of accuracy. 

2. Model Hamiltonians and Schrodinger equation in Bargmann’s Hilbert space of 
analytical functions 

In the following we consider two model Hamiltonians which contain the essential 
features of the non-adiabatic interactions. The first is a canonically transformed form 
of the generalised E O E  Jahn-Teller Hamiltonian (Reik et al 1982) 

H = a ;+ 1 a,+ 1 a T- ,a - 1 .f ($ 2 6 )a, + 2 K [ ( a, + 1 + a :+ 1 )  a, 1 i- ( ai - 1 + 0:- I )  - 1 3  (2.1 ) 
which describes two boson modes ( + )  and ( - )  interacting with a two-level system. 
The level separation is 1 + 4 6  (a:  = 1) .  The operator 

J =  a;, ,a,+,-a;_,a,_,+:a,  (2.2) 

[ J ,  H ] = O  (2.3) 

I w, + I 2 = [ a  ;+, 1 ’ @ ( a 7- 1 a 7- 1 1 10) It ) + [ a TT I I’ + ‘f( a 7- ,a T- I ) I0)lL) (2.4) 

JlW,+, 2 = (j+W),4 z j = O ,  1 , 2 , .  . . .  ( 2 . 5 )  
Here IO) is the vacuum state for both phonons and @ , f a r e  arbitrary functions of the 
products of the two creation operators. 

is a constant of motion, 

with the eigenfunctions 

We write the Hamiltonian in the form 

f H  = f J  +;+ h , ,  , ( 2 . 6 )  
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where 

h, + = a ;- ,a, - + Sa: + K [ ( a,  + + a:- )) cl + ) + ( a ,  - !  + a;+ i )  (T, - , I .  (2.7) 

H l q ) / + l t 2 = A \ q ) J + l  2 (2.8) 

h ,+) IW,+ ,  2 = E / W , + l  2 (2.9) 

A z2ESj-k;.  (2.10) 

On account of (2.3) the eigenfunctions of the Hamiltonian (2.1) are of the form (2.4) 

and satisfy the equivalent Schrodinger equation 

where the eigenvalue e is related to A by (2.7), 

We now use Bargmann's method (Bargmann 1961, 1962, Schweber 1967, Perelomov 
1986, Klauder and  Skagerstam 1985) for the solution of the eigenvalue problem (2.9), 
i.e. we map the creation operators onto two complex variables 6 and t) 

6 a?-)+ t) (2.11) 

al+!+alat  a ,  - + a / a q .  (2.12) 

which entails 

The Hamiltonian h , , , ,  the operator J and the eigenfunctions are given by 

h l T , =  t) a / a t ) + ~ ~ , + ~ K [ ( a / a t + t ) ) ~ , + ! + ( a / a t ) + t ) ~ ~ - ! l  (2.13) 

(2.14) 

(2.15) 

where z = 6 .  t). We insert (2.13) and (2.15) into (2.9) and collect the spin up  and down 
components. This gives the following system of ordinary linear first-order differential 
equations for the functions @( z),  f ( z ) :  

z d@( z ) /dz  - ( E  - 6 )@( z + K [ z d.f( z) /  dz  + ( j  + 1 + z) f (  z ) ]  = 0 (2.16) 

K ( d @ ( z ) / d z + @ ( z ) ) + z  d f ( z ) / d z - ( E + S )  f ( z ) = O .  (2.17) 

This system of differential equations is the Schrodinger equation in Bargmann's Hilbert 
space. Till now j has been restricted to positive integers including zero. Equations 
(2.16) and (2.17) still make sense for negative values of j provided one requires that 
the component wavefunctions [ '@(z) and  ("'f(z) belong to the space of entire 
functions of 5 and q. 

In  the following we introduce Judd's baseline parameter (Judd 1979) t' instead of 
A and e by 

A = lJ+;-2K2. (2.18) E = l t ' - - l '  2 2 J - T - K -  1 ' 

Next we cast (2.16) and (2.17) in a form which exhibits the pole structure 

(2.19) 

(2.20) 
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The system (2.19) and (2.20) has two regular singular points at z ' =  0 and  z ' =  K' and 
an irregular singular point at infinity. In the neighbourhood of each regular singular 
point there are in general two linearly independent multiplicative solutions (Ince 1956, 
Whittaker and Watson 1958) 

@ ( z )  = ( z  - Z ' ) Y i  2L(z - z ' )  L = C  I , ( z - Z ' ) n  (2.21) 

f ( z )  = ( z  - Z ' ) Y I  2M(Z - z ' )  (2.22) M = 2 m , ( z  - z')" 

with functions L ( z -  z ' ) ,  M ( z  - z ' )  which are regular in the vicinity of z ' .  In the 
exceptional case where the exponents y ,  and y 2  differ by an integer, there exists at 
least the multiplicative solution for the higher exponent. The second solution contains 
logarithmic terms. 

The two exponents y l ,  yz  at the regular singular points of the system (2.19) and 
(2.20) are given in the first two lines of table 1. 

Table 1. Regular singular points and  exponents for various differential equations from 
the text. 

Differential Singular point 
equation Function Z' YI Y2 

( 2 . 1 9 )  and (2 .20)  @( 2 1, f c  Z )  0 

( 2 . 2 7 )  and ( 2 . 2 8 )  @""'( z ) , f " " ' (  Z )  O 
m = + ;  K 2  

(4.1 1 w i  J -  n ;  Z )  0 
( 5 . 1 )  ui j ;  E; .\; 2 )  0 

K -  

K -  

0 - j - 1  
0 1' 

0 
0 

0 - j  
0 6 

I _-  

0 -:+ n 

For the eigenvalues U"' in the excited state i the regular solution with the exponent 
y ,  = 0 centred at z' = K' has an infinite radius of convergence. The same is true for 
the regular solution centred at z' = 0 with the higher exponent ( y1 ( f o r j  > 0) or y r  (for 
j < O ) ) .  Both solutions are identical everywhere in the complex z plane and the 
component wavefunctions [ '@( z ) ,  € ' + ' f (  z )  are entire in 5 and 77. 

We now turn to the second non-adiabatic model, the Rabi system (Schweber 1967, 
Reik er a1 1982, 1985, Kus 1985, Kus and Lewenstein 1986, Schmutz 1986) with the 
Hamiltonian 

H = U t a  (4+28)v ,  + f i K ( U ' +  U ) ( v , + l + g , - , ) .  (2.23) 

After the Bargmann mapping the Hamiltonian takes the form 

H = 5 d /d5++f+(4+2S)aZ  + - ~ ~ ( 5 + d / d 5 ) ( a , + , + a , - , ) .  (2.24) 

The eigenvalues A are determined by the requirement that the up and down components 
of the wavefunctions 

(2.25) 

( m  = *{) belong to the space of entire functions. We introduce a new independent 
variable z = it2, insert (2.24) and (2.25) in the Schrodinger equation and collect the 
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spin up  and  down components. We then obtain the following system of differential 
equations: 

z d@'"'(z)/dz-[& - 6  - $ ( m + i ) ] @ ' " ' ( ~ )  
+ K I [ Z - m + 1 / 2  -?( - f ) z - " - ' l ' ] f ' ' " ' ( z )  

+ z - ~ + ~ / ~  df '" ' (z)/dz} = 0 (2.26) 

K ( [ z m i " ' + f ( m  + f ) ~ " - " ~ ] @ " ' ( z )  + zm+l" d@'""(z)/dz} 

+ z  d f ' " ' ( ~ ) / d z - [ ~ + 6 + $ ( m + f ) ] f ' " ( z )  = O  (2.27) 

A = 2 & + 1 =  U + 4 - 2 K 2 .  (2.28) 

For m = - f  (2.26) and (2.27) are identical to (2.16) and  (2.17) with j = -$, and for 
m = f  to equations (2.28a) and  (2.29a) of Reik et a1 (1982). The properties of the 
solutions close to the regular singular points can be read off from table 1, lines 3 and 4. 

The generalised E 0 E Jahn-Teller system and the Rabi Hamiltonian can therefore 
be treated on the same footing provided one allows for positive and negative integer 
values of j as well as the value j = - 4  in the system (2.16) and (2.17). 

3. Neumann expansion of the component wavefunctions 

In the following we restrict ourselves to 1 j < 0 and define the functions 

W( 7- n ;  Z )  = ( K ' Z )  - l J - n ! / 2  z - i + n ( 2 K Z ' '  ') 

X ( K 2 Z ) k  
= ( K ? Z ) - ~ ; - n )  c (3.1) 

k = O  r(k+ i ) r (  - J+  n + k +  1) 

where Z , ( ~ K Z " ' )  is a modified Bessel function. 
We expand @ ( z ) , f ( z )  in Neumann series: 

(3.3) 

Insertion of (3.2) and (3.3) in (2.16) and (2.17) gives the following recurrence relations 
for the expansion coefficients: 

M , , ( n + l , n )  M , , ( n + l , n )  
(3.4) 

where 

f i l l ( n +  1, n )  = - K ' ( - $ j + ; +  6 + i U )  

f i , ' ( f l  + 1, n ) = - - K ?  - i j  + $+ 6 + n - + U )  
fi,,(n+ 1, n )  = ( K ? - $ j + i + n  - f v ) ( - l j + 4 + 6 + 4 v ) - K Z ( n +  1)  

M z 2 ( n  + 1, n )  = ( K Z - - i j + i +  n -it>,( - i j + f +  6 + n - $ U )  - K 2 (  n + 1)  

and 

det k ( n + l ,  n )  = - ~ ~ ( n  - u ) ( n +  1) .  (3.9) 
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Equation (3.4) is supplemented by the initial condition 

B -  0 - - K  ’ A 0- - -( K ’  - $ j  - - 6 - $ 0 ) .  (3.10) 

The recurrence relation (3.4) can be solved using a continued fraction technique which 
determines the eigenvalues U“’ in the excited states i. The Neumann expansion (3.2) 
and (3.3) converges much more rapidly than the power series expansion for a( z),  f( z )  
(Nusser 1983). 

We now turn to the Juddian isolated exact solutions. Note that all matrix elements 
it?,k( n + 1, n )  as well as A. and Bo are linear in K ’ .  Therefore A, and B, are polynomials 
of degree n t 1 in K * .  However the sums A, + B, are polynomials of degree n in K ’ .  

Equations (3.4)-(3.9) show that for integer values U = N the series terminate, i.e. 

Ah+I = A& - 2  = . . . = B,% + I = BNfZ = . . . = 0 (3.11) 

provided 

AN t B N  = O .  (3.12) 

Since A, t BN is a polynomial of Nth  degree in K * ,  equation (3.12) has N roots 
~ f ,  . . . , K L .  The positive roots are the physical values for the interaction constant for 
Juddian isolated exact solutions on baseline N. 

4. The unphysical solution of (2.16) and (2.17) 

The straightforward calculation shows that the Neumann series (3.2) and  (3.3) are 
infinite except for the Juddian isolated exact solutions. The reason is that z = K *  is an  
ordinary point in the differential equation 

d’w(J-n ;z)  f - n + 1  d w ( f - n ; z )  K’ - +- -- w(j - n ;  z ) = O  J <  0 
I dz’ r dz  Z 

(4.1) 

satisfied by the expansion functions (3.1), while z = K *  is a regular singular point in 
the system (2.19) and (2.20). This distinction is not important for integer values of U, 
hence the finite Neumann series for Juddian isolated exact solutions. These statements 
will now be proved. 

Note that for non-integer f a second solution of (4.1) is given by 

+ ( J -  n ;  z )  = ( K ? z )  ti-.) 2 I;-n (2KZ I ’) 

( K Z Z ) A  
(4.2) - - 1 r ( k +  i)r(+J- n + k + 1 ) .  

For negative integers 
this case the second solution is defined by the limit 

the right-hand sides of (3.1) and (4.2) become identical. In 

G( 7- n ; z ) = lim ( < ( ;+ A - n ; z ) - w( 7- A - n ; z )  ) /2A (4.3) 
1-0 

where G ! ( J + A - n ;  i), w ( 7 - A - n ;  z )  are given by (4.2) and (3.1) respectively. The 
solution (4.3) contains logarithmic terms. 

The analytical structure (4.2) and (4.3) is due to the fact that z = 0 is a regular 
singular point of (4.1) (see table 1 ). The point at infinity is an irregular singular point 
in (4.1) .  
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For a given eigenvalue U we obtain a second solution of (2.16) and (2.17) by the 
expansion 

(4.4) 

(4.5) 

with G ( j - n ;  z )  given by (4.2) or (4.3). 
The coefficients A,,, E ,  are the same as in (3.2) and (3.3). In order to see this, note 

that forthe derivation of (3.4)-(3.10) the differential recurrence relations for w (  7- n ;  z )  
have been used, e.g. 

d w ( j - n ;  z ) / d z = K 2 w ( j + 1 - n ;  z )  (4.6) 

which we obtained from those for the modified Bessel functions. The differential 
recurrence relations for w ( 7 -  n; z )  are true for any solution of (4.1), including (4.2) 
and (4.3). Therefore (4.4) and (4.51 is a second solution of (2.16) and (2.17). We call 
@ ( z ) , f ( z )  ((3.2) and (3.3)) the physical solution and & ( z ) , f ( z )  ((4.4) and (4.5)) the 
unphysical solution of (2.16) and (2.17). 

Let us now look at the point z = O  which is a regular singular point in (2.19) and 
(2.20) and in (4.1). 

The exponents y ,  for these equations are the same and the exponents yr  differ by 
integers n (see table 1).  Therefore the physical solution and the unphysical solution 
and their expansion functions (3.1) and (4.2) and (4.3) have the same analytical 
structure in the vicinity of z = 0. It should therefore in principle be possible to represent 
the physical solution and the unphysical solution of (2.16) and (2.17) by finite 
expansions (3.2) and (3.3) and (4.4) and (4.51, as far as this singularity is concerned. 
Let us now turn to the second regular singular point z = K :  of (2.16) and (2.17) and 
assume first that the eigenvalue U is non-integer. Since the physical solution (3.2) and 
(3.3) and the unphysical solution (4.4) and (4.5) are linearly independent and since 
the physical solution is by construction regular at z = K ' ,  the unphysical solution must 
be multivalued. 

On the other hand, each of the expansion functions (4.2) and (4.3) is regular at 
z = K~ since this point is an ordinary point of the differential equation (4.1). In order 
to expand a multivalued function by a series of functions which are regular at the 
branch point, infinitely many terms are required. Therefore the expansions (4.4) and 
(4.5) of the unphysical solution and hence the expansions (3.2) and (3.3) of the physical 
solution are infinite. 

Assume next an integer eigenvalue U .  Then the unphysical solution is regular at 
z = K ?  as are the expansion functions. Therefore the Neumann series representing the 
Juddian isolated exact solutions are finite. 

5. Natural expansion functions 

The analysis in the preceding section shows that the differential equations (2.19) and 
(2.20) and the differential equation (4 .1 )  have two singular points in common: the 
regular singular point 2 = 0 and the irregular singular point at infinity. Furthermore, 
the analytical structure of both solution and expansion functions is the same in the 
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vicinity of these singular points. Therefore the expansions (3.2) and (3.3) are rapidly 
converging. 

The foregoing analysis also shows that natural expansion functions can be construc- 
ted which allow in principle for finite expansions of a( z ) ,  f( z ) .  A necessary condition 
is that in the differential equation of the natural expansion functions z = K’  is a regular 
singular point with the exponents yI  = 0, y 2  = U + m ( m  = 1 , 2 , 3 , .  . .), while nothing is 
changed at the singular point z = 0 and at the point at infinity. In this case the analytical 
structure of both solution and natural expansion functions is the same in  the vicinity 
of all singular points of (2.19) and (2.20). There is only one second-order differential 
equation which satisfies this requirement: 

d ’ u ( i  0; .I; z ) + ( J +  1 I 1 - 6 d U ( i  6; .I; Z )  

dz’ - Z Z - K  ) dz  Z Z ( Z - K 2 )  

(see table 1 for the exponents). In particular we have 

U( j ;  1; 0; z )  = M’( J -  n ;  z ) .  (5.2) 

Equation (5.1) is one of the confluent forms of Heun’s wave equation (Heun 1889, 
Erdelyi er a1 1953). It has been treated by Lambe and Ward (1934). The transformed 
function P([) = [Jt”2(1 - [ 2 ) - L ’ 2 ~ ( ~ 2 [ 2 ) ,  = z is a generalised spheroidal 
wavefunction (Leitner and Meixner 1960, Meixner et al 1980), which for J =  --: (Rabi 
system) reduces to an ordinary spheroidal wavefunction. The reference to Heun’s 
equation and to the generalised spheroidal wavefunctions indicates that the natural 
expansion functions are more involved than the familiar functions of mathematical 
physics. I n  Ince’s (1956) classification (5.1 is derived from a differential equation 
with seven elementary singularities (exponent difference i) while (4.1) is obtained by 
the conflueiice of five elementary singularities. 

Therefore the solution of (5.1) which is regular in the vicinity of z = 0 (exponent 
yz = -71 has a finite radius of convergence except for particular values of A, the 
eigenvalues of (5.1) which are transcendental functions o f j ,  U, K ? .  We shall now find 
solutions U(?, U ;  .I,; z )  of (5.1) which are regular at z = K ’  together with their eigen- 
values -2, ( / = O ,  1, 2 , .  . .). 

In  order to d o  this we expand 

(5 .3 )  

and standardise the functions u ( i  6; I; z )  by 

C ” ( i  E ;  .I) = 1. (5.3a) 

Insertion of (5.3) in (5.1) gives the recurrence relations 

-C,+,CJ, f, I )+C,(J ,  5 ;  \ ) [ ( n - J ) ( n + 1 - 6 ) +  I] 

+c,,-,(i 6; i ) K 4 n ( n - 6 ) = 0  n = o ,  1 , 2 , .  . . (5.4) 
- 

C - , ( J ,  f ;  I) =o.  
We get a feeling for the eigenvalue spectrum by looking at the coefficients C n ( i  E ;  -2) 
in the limit n -+ X. There are two types of limits. In  the first type the second and third 
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terms in (5.4) are of the same order of magnitude 
we have 

Iim c?,(J, B; A ) / c , , - ~ ( ~  6; -1) = - K ‘  
n - 1- 

and the expansion (5.3) is regular at z = K ’ .  

In the second type the first and second terms 
magnitude, while the last term is small. We obtain 

Iim c,~+,(J, V ;  A)/c,,(J, 6 ;  . \ I=  n’. 
n - 1- 

6335 

while the first is small. Therefore 

(5.5) 

in (5.3) are of the same order of 

(5.6) 

The limit (5.6) would lead to a non-analytic behaviour of the expansion (5.3) at z = K : ,  

which must be suppressed by the choice of the eigenvalues. For K 2  --* 0 one obtains 
the approximate eigenvalues 

Ai”( i C )  = - ( I  - J ) (  I + 1 - ij) ( l = O ,  1 , 2 , .  . .) (5.7) 

by which the onset of the unwanted limit behaviour is stopped in the Ith recurrence 
relation (5.4). 

Figure 1 shows the B dependence of the exact eigenvalue ’2,(L E )  for J =  -4, -5 
and K‘  = 1 , 2 , 3 .  The curves are labelled from up  to down with ,\o(y, 13) for the uppermost 
curve. 

6 ;  , Ir  1 are 
calculated by a standard continued fraction technique (Perron 1955, Wall 1973, Henrici 
1977, Jones and Thron 1980, Risken 1984). 

The exact eigenvalues 2\,(i 6) and the expansion coefficients C,( 

The recurrence relation is turned into the form 

C, ( j; 6; A)/  C,, - I ( i E; .2) = - K‘ n ( n - ij) e,, ( j; 6; ,I) / [ ( n - J )  ( n + 1 - 6) + .\] 
where W,,(J,  5 ;  ’\) is a continued fraction given by 

( 5.8) 

W J j ;  6; .I)= l / ( l + % W , + , ( i  6; -2)) (5.9) 

(5.10) .fn = K ‘( fl  + 1 1 ( f l  -k 1 - C ) /  [ ( fl  - J ) (  f l +  1 - 6)  + .\I[ ( fl  + 1 - i) ( fl  + 2 - 6)  -k I] 

From (5.11) and (5.8) C,(, i  E ;  . \ ) /C , , - l ( l  ij; -1) tends to the limit (5.5). Therefore 
u ( j ,  v ;  .Ir; z )  is regular in the vicinity of z = K ’ .  

C I ( i  ~ ; ‘ \ ) = c i , c j ; ~ ; . ) [ - j c 1 - 6 , - c . \ ~  (5.12) 

c,( j ;  c; 11) = c,,(j; 6 ;  . I ) { [ - J (  1 - t‘) + .I][( 1 -Jj(2 - 0) +. \ I  + K ‘ (  1 - 6)}. (5.13) 

From (5.9) and (5.101, W , ( i  1; .I) is finite and W , C i  1; .I) = 1. From (5.8) C, , ( j ,  1; .I) = 
0 ( n  = 1, 2 ,  . . . j .  From (5.12) we have .Iil( 1 1 j = 0. Furthermore, by (5.9) and (5.10) 
\ q 3 ( x 2 ; , \ ) i s f i n i t e a n d  W 2 ( i 2 ; . I ) = 1 .  By(5.X),  C , , ( j , 2 ; . \ ) = O , ( n = 2 , 3  , . . .  ). From 
(5.13) we have ( j + . l ) . \ - ~ ~ = O .  The roots of this equation are the two highest 
eigenvalues .Io( j; 2) ,  .Il( 2).  For t‘ = N we obtain C,,(j ,  N ;  .\) = 0 ( n  = N, N + 1 , .  . .) 
and equations of Nth  degree i n  .I, whose roots are the highest eigenvalues 
L I o ( i  N )  . . ..I, -l(i N )  (see figure 1 and the plots in Reik and Doucha (1986a, b ) ) .  

These results show that the isolated exact solutions can be expanded in a finite 
series of natural expansion functions. 

We now show that the series (5.3) terminate for c = N. From (5.4) we have 
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6. The conjecture 

I n  the following we concentrate on @ ( = I .  We conjecture that in each eigenstate i 
( i  = 0, 1,2,  . . . I  of  the Hamiltonian the function @ ( z )  is a finite linear combination of 
eigenfunctions of (5.1): 

@ ( z ) ~ ~ / ~ , , = ~ ( = ) = C . ~ . j " u ( j ,  c " ' ;  -1,; z ) + C  . x i : ' u ( j ,  c ' " + l ;  . I / ;  z )  
I / )  ( 1  I 

(6.1) 

The finite sets of integers { l } { l ' } { l ' ' }  in the eigenstate i label the eigenfunctions of  (5 .1)  
by labelling the eigenvalues .i/(j, d " ) ,  .i/(j, c ' " +  I ) ,  .\!,(j- 1, I,"'). 

+ 1 x ; " u ( j -  I ,  I,"'; .I/,;  2 ) .  
{ / ' I  
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Equation (6.1) is obviously correct for all Juddian isolated exact solutions; we 

We now look at the consequences of (6.1).  We rewrite (3.2) as 
believe that it is also true in the general case. 

In (6.1) we expand u ( j ,  U " ' ;  A,;  z )  by using (5.3).  Comparison with (6.2) gives 

A : ' = x x i " C , ( j ,  U"'; A , ) + C  x ) " C , ( j ,  u " ' + I ;  .I/) 
i l i  I/ t 

+ n K 4  c X ; " C , , - l ( j - l ,  U"'; A/  ). (6.3) 

Equation (6.3) shows that the expansion coefficients A'," of the infinite expansions 
(6.2) are given in terms of xi", x!",  x i" ,  i.e. by a finite number of coefficients. 

We use (6.3) to calculate the coefficients x:", x ) " ,  x)" and the eigenvalues U ' " .  In 
order to d o  this we need the recurrence relations for & ' I :  

-A',;, +A',"[( n - j ) (  n + 1 - U"') + R (  j ,  U " ' ;  n ) ]  

I/ 

+ A ' , ' I , K ~ ~ ( ~ - ~ - u " ' ) ( ~ + o ( ~ ) ) = o  n = 0 , 1 , 2 ,  . . . (6.4) 

R ( j ,  U'"; n )  = j ( l -  u " ' ) - K 2 ~ u ' ' ' + l ) + ( 4 u ' 1 ' + ~ j  - + ) 7 - 8 2  

--K'("''' - + j  + $ + S )  O( n )  (6.5) 

Equation (6.9) shows that O ( n )  is only slightly n dependent and that 

lim O( n )  = 0. (6.7) 
n-IC 

Therefore the n dependence of R ( j ,  U"'; n )  is also slight. Equations (6.4)-(6.6) are 
obtained from (3.4) by eliminating E ,  in favour of A, and inserting the matrix elements 
A?,,(n + 1 ,  n )  given by (3.5)-(3.8). The similarity of the recurrence relations (6.4) and 
(5.4) is obvious. 

We insert (6.3) in (6.4) and take care of (5.4). On account of the similarity of (6.4) 
and (5.4) a lot of terms cancel and we obtain the following infinite system of equations 
for xi", x ) " ,  x;": 

C xi" r(/)(j, U " ' ;  n )  + 1 x j " ~ " '  ' ( J ,  U " ' ;  n )  
I/) 1 

+ c x;iiri/ ' ( j ,  U " ' ;  n )  = o n = 0 , 1 , 2 , . .  
i /  t 

The coefficients r"'(j,  U ' " ;  n). . . are given by 

P " ( j ,  U"'; n )  = C,,(J, U " ' ;  . I , ) [ R ( j ,  U " ' ;  n)- I / ( j ,  t ."') l  

+ C n - , ( / ,  d " ;  . \ / ) K 4 n [ - l + ( n  - 1 - U ( ' ' ) o ( n ) ]  

r"'(J, U"'; n ) = C , , ( j ,  ~ " ' + l ; . I , ) [ n - j + R ( j ,  U " ' ;  n ) - - . I , ( J ,  ~ " ' + l ) ]  

+C,,-l(j, U ' " +  1 ;  . \ / ) ~ " n [ ( n  - 1 - u " ' ) O ( n ) ] .  

(6.9) 

(6.10) 
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Equations (6.8)-(6.10) hold for I I  = 0, 1 ,2 ,  . . . . For r" '(j ,  U " ' ;  n )  we have 

r" l ( j ,  0 )  = -KJ (6.11) 

r" '(j ,  U"'; n )  = C , , - , ( j - l ,  U'"; -2, ) ~ ~ n [ v " ' ( l  - j / n ) +  R ( j ,  do ;  n )  
-.I/ ( j  - 1, u " ' ) ( I  + l / n ) ]  

+C,,-:(J- 1, U" ' ;  '4, ) K 8 n ( n  - 1)[(n - 1 - U " ' ) o ( n )  - ( n  - 1 - U"' ) /n]  

n =  1 , 2 , 3 , .  . . .  (6.12) 

Equations (6.8)-(6.12) are exact, provided (6.1) is true. 

next section we test the conjecture by looking at the numerical results. 
In this section we have studied the consequences of the conjecture (6.1). In the 

7. Numerical tests and conclusion 

We are unable to produce a proof of the existence of the finite expansion (6.1). In 
order to test the conjecture we therefore resort to an experimental method. We again 
concentrate on & ( ' I (  z). 

Firstly we compute the eigenvalues U"' ( i  = 0, 1, . . . , 5 )  and the function & ( ' I (  2 )  

numerically, for the E 0 E Jahn-Teller system, j = - 5 ,  and for the Rabi system in 
resonance ( 6  = 0, j = -4). In both cases the calculations are done for K~ = 1,2 ,3 ,  i.e. 
for intermediate coupling strengths. The accuracy is 14 digits for U'" and 12 digits for 
the expansion coefficients. Tables 2 and 3 reproduce part of the numerical results, 
namely the eigenvalues U") and the expansion coefficients A::. 

On the other hand we retrieve the numerical results analytically. We get an (almost?) 
perfect agreement by the following ansatz (6.1). The function & ( " ( z )  is a linear 

Table 2. Eigenvalues c" '  and  expansion coefficients for the E ~ F  Jahn-Teller system: 
J = -5 ,  6 = -:. Comparison of theory and  numerical results. 

K Z  I cl t A,,,/ K '%! 

1 0 
1 

3 
4 
5 

7 0 
1 

3 
4 
5 

3 0 
1 
2 
3 
4 
5 

7 

7 

1.807 908 143 174 33 
3.230447 I86 234 13 
4.691 814 839 406 83 
6.185 475 515 737 38 

9.245 284 153 134; 07 

1.1.5570058676741 
2.410 473 848 595 95 
3.703 255 956 9 I5 27 
5.031 377 988 860 47 
6.391 634 367 557 46 
7.780716 338 148 78 

0.830 619 167 673 44 
1.992 351 939 048 I O  
3.183 761 950 583 83 
4,405 489 647 509 39 
5.657 087 439 413 53 
6.937 322 1 1  1 700 9'6 

7.705 524 947 4212 29 

0.661 104470 l l O x  I O - "  
- 0 . 1 8 8 0 1 9 2 3 4 7 7 6 ~  10.'' 
-0.753 174 918 665 x IO-'' 

0.520 727 692 133 x IOV'" 
-0.334281 3941 113x 

0. I74 079 154 961 4 x 

0.320 258 560 758 x 10." 
0.692 297 327 712 x IO--"' 
0.620 229 925 625 x I O  .'' 

-0.919 069 547 083 x 1 0 ~ ~ "  
-0.130 148 452 183 x 10V" 
-0.236 158 659 81/5  x IO-'' 

-0.103 567 331 2 0 4 ~  lo-.'" 
-0.497 830 387 849 x 10~~' '  

0.928 098 320 9810 x IO-'" 
0 . 1 2 7 8 8 4 5 9 3 5 4 9 ~  1 0 ~ 3 x  
0.953 445 244 318 x 1 0 ~  " 
0.186531 0 1 9 8 5 0 ~  I O - > -  
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Table 3. Eigenvalues E ' "  and  expansion coefficients for the Rabi Hamiltonian, resonance 
6 = 0. Comparison of theory and  numerical results. 

1 1  K 2  i 

1 0 - 0.046 542 813 266 11 
1 0.881 871 OlO22l  75 
2 1.817 318 472 374 84 
3 2.895 658 140 333 02 
4 4.065 153 260 607 55 
5 5.088 533 004 1409'7 

A,,,/ ~ " " 3 0 !  
- 

-0919613 114436X lo-'" 
0.623 348 836 145 x lo-" 

-0 101 693 548 038 x IO-"  
-0.622 348 803 8357 x 

0.762 337 886 782 X 

0.143 057 107 756 x 10 '' 

2 0 -0.016933 609795 512 -0.558 734 025 936 x IO-" 
-0.170 842 031 858 x I0-j' 1 0.977 386 552 475 84 

2 1.956 870464 881 66 -0.291 483 569 428 x IO-" 
3 2.906 I50 208 827 90 0 . 1 9 9 5 0 6 2 1 6 0 8 0 ~  1W3' 
4 
5 4.887 788 230 923 86 -0.142 239 940070X IO-" 

3.858 908 985 755 25 -0.212 694 223 405 x 

3 0 -0.010 895 822 541 24 -0.146 529 586 5 1 2 4 ~  IO-'' 
1 0.987 870 665 601 40 -0.507 845 919 1 3 1 6 ~  
2 1.985 515 250463 30 -0.156 442 331 5618 x lo-'-' 

-0.543 222 142 165 X IO->' 
3 

5 

2.978 772 227 312 16 

4.918 117 909 470 29 

-0.395 257 464 710 x IO- ' '  

0.404 136 205 817 x IO-" 
4 3.958 872 745 098 19 

combination of i + 4  natural expansion functions. The choice of the functions does 
not depend on j ,  6 and K ?  and { I }  = 0, 1, . . . , i + 1, { l ' }  = i, { l "}  = i. 

In order to calculate the i + 4  coefficients x)') ,  xi ' ' ,  xi" of the natural expansion 
(6.1) we take the first i + 4  equations of the system (6.8). We fix K ? ,  6 and j and 
compute the eigenvalues U " '  by putting the determinant equal to zero. In tables 2 and 
3 a vertical line is inserted after the last decimal place for which the results of this 
method agree with the results of the numerical method. We then solve the equations 
for the coefficients xi", x;", xi" of the natural expansions. Finally we calculate the 
coefficients A','' of the Neumann expansion for 6 " ' ( z ) .  The values obtained by this 
method agree very well with the results of the numerical computation. For n = 30 this 
is shown in the last column of tables 2 and 3. The end of the agreement is indicated 
by a vertical line as before. 

We did not trim our procedure of retrieving the eigenvalues and the expansion 
coefficients to the same degree of computational sophistication that is available for 
the numerical method. We attribute the remaining incomplete agreement in tables 2 
and 3 to this fact. 

In any case, the numerical correspondences which have been established for the 
ansatz (6.1) are far from being accidental. Of course, the expansion can still be infinite 
but then the convergence is fabulously fast. We therefore believe that the answer to 
the question raised in the title of this paper is in the affirmative. But this question can 
only be settled by a proof. 
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